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Abstract—This paper introduces a novel technique in which
Maxwell equations, discretized by the transmission line matrix
method in a 3-D domain, are coupled to the Schriodinger equation
and simultaneously solved. The aim is to develop a method that
accounts for deterministic electromagnetic field dynamics together
with the quantum phenomena, which are typical of nanodevices.

Index Terms—Carbon nanotube (CNT), electromagnetic (EM)
theory, Schrodinger equation, transmission line matrix (TLM).

1. INTRODUCTION

HE CONTINUOUS growth of the telecommunication

market has led to a huge demand of high-density, efficient
RF, and optical systems. With the end of silicon transistor
scaling perhaps in sight, carbon nanotubes (CNTs) show
promise for the continued improvement of density and per-
formance of electronic components and subsystems. Potential
applications range over a wide area, including transistors [1],
[2], interconnects [3], [4], nanotweezers [5], field emission de-
vices [6], antennas [7], tunnelling structures [8], and nanowires
[9]-[12] among other uses.

Despite the enormous possibilities offered by CNTs for
practical applications, owing to their surprising properties
as monodimensional channels, they still remain “a solution
waiting for a problem.” In fact, although the above applications
have been, at least partially, realized, the fabrication processes,
i.e., nanotube growing and nanomanipulating, still are not
mature and do not allow massive production of devices with
uniform and stable characteristics.

A CNT consists of a graphene sheet (i.e., a monoatomic layer
of graphite) rolled up into a cylinder, typically a few nanome-
ters radius and length up to centimeters. Thanks to their small
dimensions, nanotubes are typically defect free. Moreover, in
nanotubes shorter than 70-80 nm, transport is nearly ballistic
since the carriers do not couple with phonons and retain their co-
herence as waves. The accurate characterization of CNTs under
operational conditions is a real challenge. The difficulty arises in
modeling quantum phenomena coupled to Maxwell equations.
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The transmission matrix formalism is a general technique
used for the analysis of coherent transport in low-dimen-
sional systems such as quantum wires [9] and 2-D electron
gas (2DEG) confined in heterostructures. The steady-state
Schrodinger equation in the frequency domain reduces to
a simple wave equation, lending itself to be treated by the
transmission line approach. In particular, the propagation of
electrons and holes along a monodimensional system can
be seen as a traveling guided-wave solution of a wave equa-
tion. It has been highlighted that interference effects may
take place between co-propagating electron waves, similar
to what happens for waveguide modes. Examples of these
monodimensional systems are provided, besides nanotubes,
by electron waveguides and nanowires. Typically, the analysis
of such devices is carried out directly in the phasor domain
[10]. The effects of an external electric field onto a nanodevice
are computed by considering the internal dynamics of carrier
transport as instantaneous with respect to the time constant of
the electromagnetic (EM) transient. For example, the ac oper-
ation of nanotransistor devices has been predicted by means
of a small-signal equivalent circuit, which makes use of the
electrostatic limit, i.e., the solution of the Poisson—Schrodinger
system. The challenge of this study is to overcome this type of
simplified approach in order to develop a full-wave analysis of
carrier transport, including the time transient.

Space-discretizing methods, like finite-difference time-do-
main (FDTD) and transmission line matrix (TLM), are
well-known techniques that allow the EM full-wave mod-
eling of 3-D structures with nearly arbitrary geometry for a
wide range of applications from EM compatibility to optics
[14]-[20]. As they are derived by direct discretization of
Maxwell equations, they are intrinsically oriented towards
solving deterministic field problems. In the literature, only
very few papers have addressed the question of employing
these techniques for quantum-mechanical problems. In [21],
the time-dependent Schrodinger equation is solved in one
dimension by the TLM. In [22], an extension of the FDTD
method is applied to solve the Schrédinger equation in 3-D.

Both of the aforementioned contributions do not consider the
interaction between the device and the EM field in which the
structure is embedded.

The goal of this paper is to introduce a novel technique by
which, for the first time, the problem is analyzed and modeled.
In particular, the total EM field, including possibly an impressed

0018-9480/$25.00 © 2008 IEEE

Authorized licensed use limited to: Tampereen Teknillinen Korkeakoulu. Downloaded on May 21, 2009 at 06:14 from IEEE Xplore. Restrictions apply.



PIERANTONI et al.: 3-D TLM SCHEME FOR COMBINED SCHRODINGER-MAXWELL PROBLEM IN ELECTRONIC/EM CHARACTERIZATION OF NANODEVICES = 655

AL/2
i SCN

=

ky qu L L]

€725
carbon nanotube

i AL=1.5 nm

i AL i

60 nm

nm ]
l »>

wn
SN

l<

Fig. 1. Analyzed structure: two thick metallic plates (20 X 20 nm) are sepa-
rated by 60 nm. A CNT is placed between the metallic electrodes.

external field and the self-generated EM field, arising from the
macroscopic current density computed form the solution of the
Schodinger equation, is consistently solved.

The proposed technique develops as follows.

1) The 3-D domain is discretized by the TLM using the sym-

metrical condensed node (SCN) approach.

2) Quantum phenomena are introduced in a subregion of said
domain, e.g., in a 1-D chain of nodes (see Fig. 1) from one
electrode (r = z1) to another (r = z5), thus simulating
the presence of a nanotube.

3) At an arbitrary time step ¢, the EM field provides appro-
priate boundary conditions (source terms) for the nanotube
subregion by means of the vector and scalar potentials
A(r,t) and ¢(r,t), directly calculated by the same EM
field [23].

4) A(r,t) and &(r,t) together with a V,,(r) potential pro-
file, which depends on the quantum properties of the nan-
otube and materials bounding the domain, constitute the
additional terms of the Schrédinger equation [23], which
is solved by means of a finite-difference scheme for that
time step ¢. More precisely, V,(r) takes into account the
static applied external field and the metal and nanotube
work functions [10].

5) The wave solution t(r,t) generates, along the domain of
the nanotube, the quantum-mechanical current J(r, ¢)[23],
which, in turn, represents an equivalent distribution of cur-
rent sources for the TLM algorithm.

These sources, located along the chain of nodes from r = z;
to 7 = 29, as shown in Fig. 2, affect the EM field for the next
time step t = t + At. At that time step ¢t = ¢ + At, the TLM
scheme generates a new distribution of potentials A(r,t) and
¢(r,t) for the Schrédinger equation, and so on. This scheme
is the basis of an iterative process by which the time-depen-
dent Maxwell equations and Schrodinger equation are simul-
taneously solved.

In Section III, we present a first investigation of the dynamic
behavior of an electron wavepacket injected in a nanotube be-
tween two metallic electrodes. The EM near field behavior is
also shown.
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Fig. 2. Modeling of the global problem: 3-D TLM discretization and 1-D
FDTD discretization. Equivalent sources and their connection to the nodes.
Stub admittances of the active voltage/current sources.

II. MODELING TECHNIQUE

A. Maxwell Equations Modeled by TLM

The TLM method introduced by Johns [15] is a space and
time discretizing method of EM field computation in which
the continuous space is segmented into cells by defining in-
tersecting planes. Ports are defined at the tangential planes be-
tween two neighboring cells and a scattering center is defined
at the center of each cell with the ports [15]-[18]. This physical
model is called the “node” and comprises the scattering center,
which is connected via transmission lines to the ports at the tan-
gential planes between neighboring cells. Pulses are scattered
at the nodes and propagate on these transmission lines to the
neighboring nodes where they are scattered again. The propa-
gation and the scattering of the wave amplitudes are expressed
by operator equations [15]-[19]; the TLM is considered as the
implementation of the Huygens principle [19].

The 3-D domain of the present problem (see Fig. 1) including
the physical objects is modeled by means of the TLM with SCN,
as in [15]-[18].

Inside the 3-D region, a 1-D chain of nodes is considered
as the 1-D domain of the nanotube where the quantum dy-
namics is described by means of the time-domain Schrodinger
equation. At each time step, the EM field is sampled along
this domain, thus providing additional source terms for the
Schrédinger equation, which is solved by means of a finite-dif-
ference scheme [14]. Its solution provide distributed quantum
mechanical current sources, which, in turns, inject energy into
the TLM nodes.
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B. Schridinger Equation

The quantum mechanical behavior of a charge carrier is de-
scribed by the time-dependent Schrodinger equation

h

in 20 (1) ot

(. :< h v2+V()>¢(r7t) h=or @

The wave function ¥(r,t) has no direct physical meaning,
but all relevant physical parameters can be determined from it.
Itis complex, in fact, even though it is in the time domain. Mean-
ingful physical quantities are determined once the complex con-
jugate 9 (r, t)* is also employed. The basic requirement for the
solutions is the following normalization condition, stating that
the probability of the particle being somewhere is 1:

“+oo
/ | (r, 1)[* dr = 1. 2

The real function V() is the potential, having the units of
energy (eV'), h = 6.26 * 10 — 34[J * s] is Plank’s constant, m
is the mass of the particle being represented by the Schrodinger
equation, usually an electron, but it might be the “effective
mass” of that particle in a particular semiconductor. The vector
r = (z,y, 2) indicates the position in a rectangular coordinates
system, ¢ is the time variable, and ¢ is the imaginary unit.

C. Schridinger Equation Coupled to Maxwell Equations
In the presence of an EM field, (1) is rewritten as follows [23]:

{om B = aA (0 4 00 (0.0)+ V) W (1)

L0 (r,t)

where A(r,t), ¢(r,t) are vector and scalar potentials, directly
related to the EM field through the appropriate gauge, e.g., the
“temporal” gauge [23], and ¢ = —e = 1.602 x 10 — 19[C] is
the electron charge. In (3), the canonical momentum, p appears,
whereas the kinematic momentum k provides the EM field con-
tribution to the kinetic energy
p=—ihV k=p—qA(rt). (4)

By referring to Fig. 1, the EM field acts over a 3-D domain,
whereas the Schrodinger equation describes the quantum dy-
namic along the 1-D domain (21 < z < z2) where the nanotube
is placed.

By taking into account the algebraic properties of operators p
and k, as in [23] for example, (3) becomes
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Now, by projecting (4) along the z-direction, we obtain
1 2 82¢ (Zv t) .
%{—h 7 — 2€ZhAZ (Z7t)
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By observing (5), we note that A(z,t) and A.(z,t) are the

amplitude and z-component of the potential vector A(r,t),
respectively. It has been tested that the terms involving
0A, [0z and A, /dy do not provide appreciable contribution.

The V,(r) static potential profile and the ¢(r,t) dynamic
scalar potential are also sampled along the z-direction as V,,(2)
and ¢(z,t), respectively.

In order to avoid complex quantities, we split (6) into
two parts by separating the real and imaginary compo-
nents of (r,t): P(r,t) = Ygr(r,t) + ipr(r,t), ie.,
P(z,t) = gr(z,t) + Wr(z,t) in the z-direction. This
leads to the following two coupled equations:
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In a 1-D space, we approximate (z,t) by ¥™(k) =
Y(kAz,nAt), where k and n are indices and Al = Az and At
are the spatial and temporal steps, respectively.

Equation (7) is now discretized and solved by a finite dif-
ference-time domain scheme, as in [22], giving (8a) and (8b),
shown at the bottom of the following page.

Finally, the wave function 1™ (k) of (8) is derived once an ini-
tial 1(z, ¢t = 0) distribution is defined and appropriate boundary
conditions are imposed for z = 212 = 2.

D. Stability

The choices of the time step At and of the space-step Al are
crucial. We first choose the space-step Al as the same for both
TLM and FDTD, Al = AZTLM = AlFDTD-
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We then have to select At as the smaller value between:
1) AtppTp, Which ensures stability of the 1-D FDTD algorithm
of the Schrédinger equations (5)—(8) and 2) At = Al/H ey,
which ensures the stability of the TLM algorithm, with c¢g being
the free-space light velocity and H being the stabilization factor
[15]-[21].

Concerning 1), as reported in [22], if A(r,t) = 0, ¢(r,t) =
0, At has to be selected so that At < Afcritical 1S

h
Atcritical =

72 &)

A2+|P|

where |V,|max is the maximum absolute value of the potential
V,(2) along the nanotube.

In the case of A(r,t) # 0, ¢(r,t) # 0, the spatial derivatives
of A,(z,t), and the terms proportional to | A (z, t)| give contri-
butions that should be added in the denominator of (9).

As a matter of fact, these contributions have been tested to
provide a value of At itical an order of magnitude smaller than
that of (9). In order to ensure stability, we choose a AtgppTp
that is two or three orders of magnitude smaller than that of (9):
AtppTp < Ateritical * 1072,

This choice is also a constraint because we observe that, con-
cerning 2), we always have At < Atgpprp by some order
of magnitude, thus leading to the position At =
AtrpTD.

Atriv =

E. Quantum-Mechanical Current

Once (8) is solved for a time step t = nAt, the expression of
the current density is derived as in [23].
The z-component [A] of such a current is

1) =g (50 —% ) - Lk af.

(10)

The other current components are negligible due to the one-
dimensionality nature of the current transport, as tested. The .J,
current (10), originated by quantum mechanical phenomena, is

now modeled as a J; displacement current along the nanotube,
which pumps active energy into the EM field
oD (r,t)
ot
Itis noted that the above is just a working assumption (Ansatz)

and other positions are possible. The J; source current is sam-
pled along the nanotube

Ji(r,t) = an)

Ja(rt)=J.(z0)2 J.(21) =

Once the J"(k) distributed values of the quantum mechan-
ical current are known, the corresponding E” (k) equivalent dis-
tributed voltage density sources are calculated as follows:

OFE. (z,t)
Ep——=
0 ot

1 t
E0¢€r Jo

These sources inject active energy into the EM field by means
of the TLM chain of nodes located on the subregion zj, where
zt1 < zj < zts.

JU(k). (12

J. (z,t) =

= FE. (z,1)

13)

F. Modeling of the Equivalent Sources

The modeling of the equivalent TLM active sources is de-
picted in Fig. 2. For each node belonging to the nanotube, the
local J" (k) current is equivalent to injected pulses, impinging
onto the nodes and scattered from them at the next time step
t = (n + 1)At. In the model, we can refer either to equiva-
lent current or voltage sources, depending on the chosen point
of view. This conceptual equivalence is directly related to the
Thevenin—Norton equivalent circuit transformation, as shown in
Fig. 2, and reported as follows:

B (k) = coer k) Z T2k
v (k) =B+ (k) Al
i(k)=v (k)Y (k)
Y (k)=2Z k)" . (14)
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In(14),Y = 1/Z =Y. is the Thevenin—Norton admittance/
impedance, set equal to the source stub admittance/impedance,
as explained below.

The technique for introducing active source elements across
a set of TLM—-SCN nodes has been introduced in [24], [25].

If an active device is connected to the node, the node must
be consequently modified. In general, assuming that the active
sources can be oriented in any one of the three orthogonal di-
rections, three equivalent generators and three stubs with ap-
propriate admittances must be added to the node. In the present
case, the active sources and corresponding generators are z-Ori-
ented.

The scattering matrix of the new node, now taking into ac-
count the interaction between 21 lines (12 link lines and nine
stubs), must be determined according to the laws of energy con-
servation, and assumes a form similar to that of the SCN for the
modeling of electrical losses.

A full 21 x 21 matrix is, therefore, needed to model the ma-
terial properties of the node in conjunction with the presence of
the local lumped device. The coefficients of the new scattering
matrix are reported in [25].

In the present case, the equivalent distributed sources are
placed in the z-direction, the transverse coordinate being fixed.
Taking into account the denomination of lines and ports of [18]
and [20], (14) assumes the form

E:H_l (k) = n+1a1;710;y0;k

1
= J7 (k) At 15
E0Er ($07y07k) —0 * ( ) M ( )

n

n

with nafl .y Deing the incident wave amplitude at the nodes

(20, Yo, 2), located at (zoAx, yoAy, kAz) in a Cartesian coor-
dinate system; the p-index refers to the p-port in the SCN scat-
tering matrix: in the present case, we have p = 21. The TLM
grid is homogeneous with Az = Ay = Az = AL. The p index
is set to z, where zt; < z < zt5 is the polarization of the wave
amplitude that corresponds to the local active source, as shown
in Figs. 1 and 2.

In (15), the value of the ,,1b, 4,1 reflected wave amplitude
is self-consistently set to zero, as we choose the Y. source stub
admittance appropriately in order to decouple the incident and
reflected wave amplitudes traveling in the device stub, as re-
ported in [24] and [25].

G. Boundary Conditions

In order to increase the accuracy, the 3-D Maxwell domain,
modeled by the TLM, is bounded by the exact boundary condi-
tions provided by the TLM-integral-equation (TLM-IE) tech-
nique [20].

For the 1-D Schrodinger domain, we impose Dirichlet
boundary conditions, meaning that the wave function 1(z,t) is
set to zero at the boundaries v (z1,t) = 1(z2,t) = 0 for each .

H. Excitation

The structure can be excited: 1) by an external applied and/or
impinging EM field; 2) by an initial distribution 9 (r,¢ = 0)
wave function along the nanotube; 3) by injection of charge

from the electrodes; or 4) by a combination of the above condi-
tions. In the present work, we deal with 2).

It is noted that the problem analyzed is 1-D with respect to
the Schrodinger equation, but full 3-D with respect to Maxwell
equations.

III. RESULTS

We analyze the 3-D structure of Fig. 1 having the realistic di-
mensions reported in the figure; the metallic electrodes present
in a nanotube transistor are shown as two thick metallic plates
(dimensions: 20 x 20 nm) separated by a distance of 60 nm. A
CNT is placed between the two plates; another metallic plate, lo-
cated below the CNTs, simulates a gate electrode. An insulator,
of relative permittivity e, = 5.7, completely fills the space be-
tween the nanotube and gate contact.

Let us consider an electron wavepacket, previously injected
inside the nanotube, whose energy is centred near the bottom of
the first band of a semiconducting nanotube (16, 0).

We use the index pair (16, 0) defining the way the graphene
sheet is rolled up (chirality). In particular, semiconducting nan-
otubes are those whose chirality is given by index pairs of (n, 0)
type. The first band is assumed to be partly occupied by elec-
trons diffused from the lateral metallic contacts. In fact, elec-
trons are allowed to enter the nanotube to the chosen profile of
the potential Vp(z) of Fig. 2, following a typical voltage bias of
the electrodes [10]. We will now show the dynamic behavior of
an electron wavepacket trapped inside the nanotube.

The TLM grid is homogeneous: Az = Ay = Az = AL =
1.5 nm with AL ~ 1/10Acec Where Aglec = 15.7 nm is the
electron wavelength associated to its Feee = 0.1 eV energy.
The resulting grid is constituted by (90 X 90 x 150) nodes. The
time step is At = 2.5 % 1072 fs. In the simulations we consider
Nstep = 200000 time steps, corresponding to a time slot of
Timax = 0.5 ps.

A. Exciting Wavepacket

The exciting wavepacket (¢ = 0) has a Gaussian spatial shape
centered at 2, = z.. We may associate a spectral width (in
energy) to the launched wavepacket by simply employing the
relation between energy and wavenumber for a steady state of
the Schrodinger equation (at ¢ = 0, the EM field is set to zero
everywhere)

2

2
Yr (2 = kALt =0) =1 exp (_ ((zx ; 2k, ) Al) )

g
k 2 <2mE0100) 1/2
mex )\ele(‘, B h2
)\e ec 1
el

In (16), Ak = kpnax is the width of the wavepacket in the
wavenumber domain and 7 is the electron “effective mass” set
to 0.06 * m,, with m, = 9.109 x 103! kg being the electron
free mass [23]. The use of the effective mass approximation is
consistent with the choice of such a sharp pulse (in energy).
Furthermore, this choice ensures that the contribution of sub-
bands, seen as different channels for carrier transport having
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Fig. 3. Initial condition (for # = 0) of the incident wavepacket, centered in the
middle of the nanotube and the distribution of the static potential profile.

different effective masses, can be neglected. No external EM
field is applied at ¢ = 0.

B. Injected Charge

The total charge injected in the initial (¢ = 0) electron
wavepacket is chosen according to typical values used for
nanotubes embedded in a realistic device [12]. This charge is
defined as the spatial integral of the linear density of charge
diffused along the nanotube and depends on the operative
conditions, such as: 1) the applied external voltages and 2) the
geometrical parameters (electrode dimensions, nanotube size).
The applied external voltages provide direct control on the
electronic transmission properties of the nanotube channel.
Moreover, the longer and larger the nanotube, the higher the
total charge trapped between the electrodes. A typical value
of the total charge for the 60-nm nanotube of Fig. 1 is esti-
mated according to [10]. Therefore, we normalize the initial
wavepacket in order to deal with a charge () that is approxi-
mately one order of magnitude greater then the electron charge
Qo ~ 10q, ¢ = 1.602 x 10719[C] as follows:

o[ Weora=g [ wEoPE=on  an

With respect to the case analyzed in [10], the Schrédinger
equation (1) is solved for just one type of charge, the electron,
because in the case of Fig. 1, the external bias is chosen in such
a way as not to allow hole propagation. The potential profile
for electrons and the initial Gaussian wavepacket are shown in
Fig. 3 (the origin of the z-axis is the border of the left-side elec-
trode): we observe the presence of Schottky barriers, detected
by the electrons at the nanotube terminations.

These barriers are modeled, as a first approximation, by rect-
angular functions. It has to be noted that they cause the electron
wavepacket to be better confined within the nanotube cavity.

The amplitude of the launched wavepacket has to be multi-
plied by the normalization constant of ¥ (|¥¢|? ~ 1,78 % 10°
in the actual case), as derived from (17).

—t=0

------- t=0.125 ps
—ea—1t=0.25ps
——1=0.5 ps

Amplitude*10° of |y [1/m]

Schottky

1,25 / barrier
1

position (x 1.5 nm)

Fig. 4. Space evolution of the Gaussian wavepacket |¢(z,t)|? fort = 0,¢ =
0.125,t = 0.25,and t = 0.5 ps, respectively.
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Fig. 5. Detail of the Fig. 4 penetration of the wavepacket into the potential
barrier (1.2 eV) at the end of the nanotube.

C. Wavepacket Propagation Without EM Coupling

We first analyze the case of absence of interaction between the
propagating wavepacket and the EM field by setting A, (z,t) =
¢(z,t) = 0in (7) and (8).

In Fig. 4, we show the spatial evolution of the Gaussian
wavepacket |1)(z, t)|? along the nanotube domain for different
time samples: for¢t = 0,¢ = 0.125, ¢ = 0.25, and ¢t = 0.5 ps.

It is noted that, in the described operative conditions, the
wavepacket tends to be focalized after time slots of approxi-
mately ¢ = 0.25 ps.

In Fig. 5, we report the detail of the wavepacket penetra-
tion through the left-side Schottky barrier (width: 3 nm). Fig. 6
gives the equivalent J(z,t) current for the same time samples
of Fig. 4. In Fig. 7, we show the evolution of the Gaussian
wavepacket |1)(z, t)|? in time and space. While approaching the
end of the time interval, the wavepacket |1 (z, t)|? begins to pen-
etrate the potential barriers, located around z = 0 and z = 40
(x 1.5 nm) in the figure.
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Fig. 6. Space dynamics of the current J(z,t) att = 0,¢ = 0.125,and t =
0.5 ps, respectively.
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Fig. 7. Time-space evolution of the Gaussian wavepacket |¢(z, t)|?.

D. Wavepacket Propagation With EM Coupling

We now analyze the full-wave coupling between the
wavepacket propagation and EM field.

In Fig. 8, we compare the spatial evolution of the Gaussian
wavepacket |1)(z, t)|? to the previous case with no EM coupling
fort = 0.125,¢ = 0.25, and ¢t = 0.5 ps. It is remarkable to note
that the EM coupling is not negligible, as it notably effects the
wavepacket diffusion.

This implies that the self-induced potentials are significantly
changing the “topology” of carrier transport with respect to the
unperturbed case.

Fig. 9 shows the comparison of the corresponding evolution
of currents for ¢ = 0.5 ps. Even more relevant here is the cor-
rection needed.

For a diffusion model that does not account for the EM cou-
pling, the difference is strong, as the current contains the deriva-
tive of the electronic wave function, where we show the com-
parison of the corresponding evolution of currents J(z,t) for
t = 0.5 ps, highlights a remarkable relative error (the current is,
in fact, related to the derivative of the wave function ¢ (z, t) of
about 50% around the central zone.

The current density J(z,t), originated by microscopic
quantum properties, can be seen as the macroscopic ballistic
transport effect of the CNTs.

Amplitude*1 0° of b (] ] e t=0.125 ps
—e—1=0.25ps
—a—1t=0.5ps

—o0—1=0.125 ps - EM coupling
—=a—1=0.25 ps - EM coupling
——1=0.5 ps - EM coupling

O

Schottky

barrier
0,75

05

0,25 | metal

electrode

position (x 1.5 nm)
Fig. 8. Comparison between the space evolution of the Gaussian wavepacket

|1(z,t)|? in the case of EM coupling to the case of A.(z,%) = ¢(z,t) =0
fort =0,¢t = 0.125,t = 0.25,and t = 0,5 ps, respectively.

Amplitude*10® [A]

—a—"t=0.5 ps - EM coupling"
—"t=0.5 ps"

Current
N
)

position (x 1.5 nm)
-3 T . T T T T T )
0 5 10 15 20 25 30 35 40 45

Same comparison of Fig. 8, but for the quantum mechanical currents at

Fig. 9.
= 0.5 ps.

i

Amplitude*10°  [V/m] R
—o - Ezt=0.125 ps

a—Ex t=0.125 ps
Ez t=0.25 ps
Ex t=0.25ps

position (x 1.5 nm)

-4

Fig. 10. Space evolution of the E,- and E.-field fort = 0.125 and t =
0.25 ps in a transversal line with respect to the nanotube.

Its characterization is the prerequisite for the calculation of
the voltage—current transfer characteristics in real nanodevices,
e.g., field-effect transistor devices.

In Fig. 10, we show the space evolution of the F,- and
E.-field in a transverse domain, crossing the center of the
nanotube.

It is noted that both the longitudinal F.-field and the radial
E,-field (and F,-field) components recall the EM field distri-
bution related to a current traveling on a thin wire.
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Fig. 11. Normalized spectrum of the E. -field calculated at a point placed 3 nm
close to the nanotube.

Finally, in Fig. 11, we show the frequency response (normal-
ized amplitude) of the EM near field by sampling the F,-field at
a point placed 3 nm close to the nanotube. We observe that the
spectrum extends up to frequencies corresponding to A = ¢/ f
optical wavelengths with ¢ = c,&, 172 and er = 5.7.

IV. CONCLUSIONS

The goal of this study was to build a TLM scheme capable of
dealing with newly emergent structures based on quantum tran-
sistor devices such as nanotube transistors. For this purpose, we
have introduced a novel numerical technique in which Maxwell
equations are coupled to the Schrodinger equation and solved
self-consistently.

A first application of the method to the injection of charge into
the nanotube has shown the TLM scheme capable of describing
the resulting EM transient. Possible applications are in the simu-
lation of high-frequency nanotransistor and nano-light-emitting
diodes (LEDs).
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